F^-1(x)=-1/2x+9

Simple and best practice solution for F^-1(x)=-1/2x+9 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for F^-1(x)=-1/2x+9 equation:



^-1(F)=-1/2F+9
We move all terms to the left:
^-1(F)-(-1/2F+9)=0
Domain of the equation: 2F+9)!=0
F∈R
We add all the numbers together, and all the variables
-1F-(-1/2F+9)=0
We get rid of parentheses
-1F+1/2F-9=0
We multiply all the terms by the denominator
-1F*2F-9*2F+1=0
Wy multiply elements
-2F^2-18F+1=0
a = -2; b = -18; c = +1;
Δ = b2-4ac
Δ = -182-4·(-2)·1
Δ = 332
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$F_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$F_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{332}=\sqrt{4*83}=\sqrt{4}*\sqrt{83}=2\sqrt{83}$
$F_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-18)-2\sqrt{83}}{2*-2}=\frac{18-2\sqrt{83}}{-4} $
$F_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-18)+2\sqrt{83}}{2*-2}=\frac{18+2\sqrt{83}}{-4} $

See similar equations:

| 2(a-18)+7=5(a+2)-19 | | 2b+3=3b-10 | | F(x)=-1/2x+9 | | 6(3m+2)=42 | | 4w+1=25+2w | | 3y(5y-2)=-20y+8 | | 4x-50=2x=10 | | 2n+20=n+60 | | 25=7+y | | 4(x+9)+4=9x-5(x-6) | | 3x-5(x-2)=7+4x-25 | | 12g+12=3g+84 | | 6c-98+2c-26=180 | | -7n-7-8+10n=0 | | 3(y-5)=7-2(y+1) | | 6m+16=2m+28 | | -1.4+x/7=-12.6 | | 9-(2y+2)=13 | | 5x+9-2x=39 | | -12.6=-1.4+x/7 | | -(y+3)=3y-4 | | 4x+14+76=180 | | 6x+10+4x=3x | | 5x-1=8x-23 | | X-1/2-4=x-5/2 | | 1.1+w/4=-5.3 | | 100=1-112n | | 4x-18+18+7x=2x+21-4x | | 6x/2=-20 | | -11+3n=-5+2n | | 25(10b-15)=4 | | 3(y-1)=2(y+10) |

Equations solver categories